Constellations, Launch, New Space and more…
TAG
“Marco Pavone”
NASA Funds Development of Small Robots to Explore Martian Caves
Graphic depiction of ReachBot: Small Robot for Large Mobile Manipulation Tasks in Martian Cave Environments. (Credits: Marco Pavone)

by Douglas Messier
Managing Editor

NASA is funding research into small, agile systems known as ReachBots designed to explore the caves beneath the surface of Mars.

(more…)
  • Parabolic Arc
  • March 2, 2022
NASA Selects Futuristic Space Technology Concepts for Early Study
Credit: NASA

WASHINGTON (NASA PR) — An astronaut steps into a body scanner and, hours later, walks on Mars in a custom-made spacesuit, breathing oxygen that was extracted from Mars’ carbon dioxide-rich atmosphere. On Venus, an inflatable bird-like drone swoops through the sky, studying the planet’s atmosphere and weather patterns. Ideas like these are currently science fiction, but they could one day become reality, thanks to a new round of grants awarded by NASA.

(more…)
  • Parabolic Arc
  • February 25, 2022
Visionary Tech Concepts Could Pioneer the Future in Space

WASHINGTON (NASA PR) — NASA missions make it seem like the future is now – rovers exploring Mars with cutting-edge gadgets, a spacecraft venturing home with an asteroid sample, and a complex space telescope peering at the early universe. So, what’s the next big thing? What might space missions in 2050 and beyond set out to discover? 

One small NASA program aims to see what could be possible. The NASA Innovative Advanced Concepts (NIAC) program, part of the agency’s Space Technology Mission Directorate, funds early-stage research into sci-fi sounding, futuristic technology concepts. The goal is to find what might work,  what might not, and what exciting new ideas researchers may come up with along the way

(more…)
  • Parabolic Arc
  • September 15, 2021
NASA Funds Research into Small Robots Designed to Explore Martian Caves
Illustration of ReachBot traversing a Martian cavern using microspine grippers across different types of treacherous terrain: (left) a vertically winding tunnel with a rocky and uneven floor, (center) an overhanging wall or ceiling, and (right) a sheer vertical wall in a large cavern or on a cliff. (Credits: Marco Pavone)

NASA Innovative Advanced Concepts (NIAC) Phase I Award
Funding: up to $125,000
Study Period: 9 months

ReachBot: Small Robot for Large Mobile Manipulation Tasks
in Martian Cave Environments
Marco Pavone
Stanford University
Stanford, Calif.

Synopsis

The objective of this effort is to develop a mission architecture where a long-reach crawling and anchoring robot, which repurposes extendable booms for mobile manipulation, is deployed to explore and sample difficult terrains on planetary bodies, with a key focus on Mars exploration. To this end, the robot concept we present here, called ReachBot, uses rollable extendable booms as manipulator arms and as highly reconfigurable structural members.

(more…)
  • Parabolic Arc
  • March 1, 2021
Futuristic Space Technology Concepts Selected by NASA for Initial Study
This illustration shows a conceptual lunar railway system called FLOAT (Flexible Levitation on a Track) that has been selected for an early-stage feasibility study within the NASA Innovative Advanced Concepts program. (Credit: NASA/JPL-Caltech)

PASADENA, Calif. (NASA PR) — Four advanced space concepts from NASA’s Jet Propulsion Laboratory have been selected to receive grants for further research and development.

(more…)
  • Parabolic Arc
  • February 27, 2021
Proposed Spacecraft Would Hop and Roll Over Asteroids, Moons

Spacecraft/rover hybrids (Credit: Marco Pavone)

Spacecraft/rover hybrids (Credit: Marco Pavone)

The NASA Innovative Advance Concepts (NASA) program has awarded Marco Pavone of Stanford University a Phase II grant to continue development of small exploration vehicles that would hop and tumble across the surfaces of asteroids, moons and comets.

The spacecraft/rover hybrids would be deployed from a mother ship orbiting the body to be explored. Their movements would be controlled by three internal flywheels.

The award is worth up to $500,000. The earlier Phase I award was worth up to $100,000.

NASA awarded five NIAC Phase II contracts in this round of funding.

Pavone’s summary of the project follows.

(more…)

  • Parabolic Arc
  • August 12, 2014