WASHINGTON (NASA PR) — NASA has announced that our next destination in the solar system is the unique, richly organic world Titan. Advancing our search for the building blocks of life, the Dragonfly mission will fly multiple sorties to sample and examine sites around Saturn’s icy moon.
LAUREL, Md. (JHUAPL PR) — It sounds like science fiction: fly a robotic rotorcraft over the dunes of an alien moon. But NASA is giving a team led by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, the opportunity to turn this idea into space exploration reality.

This composite image of the primordial contact binary Kuiper Belt Object 2014 MU69 (nicknamed Ultima Thule) – featured on the cover of the May 17 issue of the journal Science – was compiled from data obtained by NASA’s New Horizons spacecraft as it flew by the object on Jan. 1, 2019. The image combines enhanced color data (close to what the human eye would see) with detailed high-resolution panchromatic pictures. (Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Roman Tkachenko)
https://www.nasa.gov/feature/nasa-s-new-horizons-team-publishes-first-kuiper-belt-flyby-science-results
NASA’s New Horizons mission team has published the first profile of the farthest world ever explored, a planetary building block and Kuiper Belt object called 2014 MU69.
by Justyna Surowiec
Johns Hopkins Applied Physics Laboratory
The Double Asteroid Redirection Test (DART) – NASA’s first mission to demonstrate a planetary defense technique – will get one chance to hit its target, the small moonlet in the binary asteroid system Didymos. The asteroid poses no threat to Earth and is an ideal test target: measuring the change in how the smaller asteroid orbits about the larger asteroid in a binary system is much easier than observing the change in a single asteroid’s orbit around the Sun. Work is ramping up at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and other locations across the country, as the mission heads toward its summer 2021 launch – and attempts to pull off a feat so far seen only in science fiction films.
WASHINGTON (NASA PR) — NASA has selected SpaceX in Hawthorne, California, to provide launch services for the agency’s Double Asteroid Redirection Test (DART) mission, the first-ever mission to demonstrate the capability to deflect an asteroid by colliding a spacecraft with it at high speed – a technique known as a kinetic impactor.
The total cost for NASA to launch DART is approximately $69 million, which includes the launch service and other mission related costs.
LAUREL, Md. (NASA PR) — Cross your eyes and break out the 3D glasses! NASA’s New Horizons team has created new stereo views of the Kuiper Belt object nicknamed Ultima Thule – the target of the New Horizons spacecraft’s historic New Year’s 2019 flyby, four billion miles from Earth – and the images are as cool and captivating as they are scientifically valuable.

The most detailed images of Ultima Thule — obtained just minutes before the spacecraft’s closest approach at 12:33 a.m. EST on Jan. 1 — have a resolution of about 110 feet (33 meters) per pixel. Their combination of higher spatial resolution and a favorable viewing geometry offer an unprecedented opportunity to investigate the surface of Ultima Thule, believed to be the most primitive object ever encountered by a spacecraft. This processed, composite picture combines nine individual images taken with the Long Range Reconnaissance Imager (LORRI), each with an exposure time of 0.025 seconds, just 6 ½ minutes before the spacecraft’s closest approach to Ultima Thule (officially named 2014 MU69). The image was taken at 5:26 UT (12:26 a.m. EST) on Jan. 1, 2019, when the spacecraft was 4,109 miles (6,628 kilometers) from Ultima Thule and 4.1 billion miles (6.6 billion kilometers) from Earth. The angle between the spacecraft, Ultima Thule and the Sun – known as the “phase angle” – was 33 degrees. (Credits: NASA/Johns Hopkins Applied Physics Laboratory/Southwest Research Institute, National Optical Astronomy Observatory)
LAUREL, Md. (NASA PR) — The mission team called it a “stretch goal” – just before closest approach, precisely pointing the cameras on NASA’s New Horizons spacecraft to snap the sharpest possible pictures of the Kuiper Belt object nicknamed Ultima Thule, its New Year’s flyby targetand the farthest object ever explored.
Now that New Horizons has sent those stored flyby images back to Earth, the team can enthusiastically confirm that its ambitious goal was met.

As more data of Ultima Thule were analyzed, including several highly evocative crescent images taken nearly 10 minutes after closest approach, a “new view” of the object’s shape emerged. Ultima more closely resembles a “pancake,” and Thule a “dented walnut.” (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
LAUREL, Md. (JHUAPL PR) — An evocative new image sequence from NASA’s New Horizons spacecraft offers a departing view of the Kuiper Belt object (KBO) nicknamed Ultima Thule – the target of its New Year’s 2019 flyby and the most distant world ever explored.
These aren’t the last Ultima Thule images New Horizons will send back to Earth – in fact, many more are to come — but they are the final views New Horizons captured of the KBO (officially named 2014 MU69) as it raced away at over 31,000 miles per hour (50,000 kilometers per hour) on Jan. 1. The images were taken nearly 10 minutes after New Horizons crossed its closest approach point.
LAUREL, Md. (NASA PR) — On Jan. 19, 2019, just 161 days after its launch from Cape Canaveral Air Force Station in Florida, NASA’s Parker Solar Probe completed its first orbit of the Sun, reaching the point in its orbit farthest from our star, called aphelion. The spacecraft has now begun the second of 24 planned orbits, on track for its second perihelion, or closest approach to the Sun, on April 4, 2019.
HOUSTON, January 31, 2019 (NanoRacks PR) — NanoRacks successfully completed the 15th CubeSat Deployment mission from the Company’s commercially developed platform on the International Space Station. Having released five CubeSats into low-Earth orbit, this mission marks NanoRacks’ 190th CubeSat released from the Space Station, and the 228th small satellite deployed by NanoRacks overall.
The CubeSats deployed were launched to the Space Station on the 16th contracted resupply mission for SpaceX from the Kennedy Space Center in December 2018.
NanoRacks offered an affordable launch opportunity, payload manifesting, full safety reviews with NASA, and managed on-orbit operations in order to provide an end-to-end solution that met all customer needs.