Cutting-Edge Science Launches on NASA’s SpaceX Cargo Resupply Mission

KENNEDY SPACE CENTER, Fla. (NASA PR) — The latest SpaceX Dragon resupply spacecraft is bound for the International Space Station after launching at 3:14 a.m. EDT Sunday on a Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida, carrying more than 4,800 pounds of science experiments, crew supplies, and spacecraft hardware.
The cargo Dragon, launched on SpaceX’s 23rd Commercial Resupply Services mission, is scheduled to autonomously dock at the station around 11 a.m. Monday, Aug. 30, and will remain at the station for about a month. NASA astronauts Megan McArthur and Shane Kimbrough will monitor arrival of the spacecraft. Coverage of the arrival will begin at 9:30 a.m. on NASA Television, the agency’s website, and the NASA app.
The science experiments Dragon will deliver include:
Building bone with byproducts
REducing Arthritis Dependent Inflammation First Phase (READI FP) evaluates the effects of microgravity and space radiation on the growth of bone tissue and tests whether bioactive metabolites, which include substances such as antioxidants formed when food is broken down, might protect bones during spaceflight. The metabolites that will be tested come from plant extracts generated as waste products in wine production. Protecting the health of crew members from the effects of microgravity is crucial for the success of future long-duration space missions. This study could improve scientists’ understanding of the physical changes that cause bone loss and identify potential countermeasures. This insight also could contribute to prevention and treatment of bone loss on Earth, particularly in post-menopausal women.
Keeping an eye on eyes
Retinal Diagnostics tests whether a small, light-based device can capture images of the retinas of astronauts to document progression of vision problems known as Space-Associated Neuro-Ocular Syndrome (SANS). The device uses a commercially available lens approved for routine clinical use and is lightweight, mobile, and noninvasive. The videos and images will be downlinked to test and train models for detecting common signs of SANS in astronauts. The investigation is sponsored by ESA (European Space Agency) with the German Aerospace Center Institute of Space Medicine and European Astronaut Centre.
Robotic helpers
The Nanoracks-GITAI Robotic Arm will demonstrate the microgravity versatility and dexterity of a robot designed by GITAI Japan Inc. Results could support development of robotic labor to support crew activities and tasks, as well as inform servicing, assembly, and manufacturing tasks while in orbit. Robotic support could lower costs and improve crew safety by having robots take on tasks that could expose crew members to hazards. The technology also has applications in extreme and potentially dangerous environments on Earth, including disaster relief, deep-sea excavation, and servicing nuclear power plants. The experiment will be conducted inside the Nanoracks Bishop Airlock, the space station’s first commercial airlock.
Putting materials to the test
MISSE-15 NASA is one of a series of investigations on Alpha Space’s Materials ISS Experiment Flight Facility, which is testing how the space environment affects the performance and durability of specific materials and components. These tests provide insights that support development of better materials needed for space exploration. Testing materials in space has the potential to significantly speed up their development. Materials capable of standing up to space also have potential applications in harsh environments on Earth and for improved radiation protection, better solar cells, and more durable concrete.
Helping plants deal with stress
Plants grown under microgravity conditions typically display evidence of stress. Advanced Plant EXperiment-08 (APEX-08) examines the role of compounds known as polyamines in the response of the small, flowering plant thale cress to microgravity stress. Because expression of the genes involved in polyamine metabolism remain the same in space as on the ground, plants do not appear to use polyamines to respond to stress in microgravity. APEX-08 attempts to engineer a way for them to do so. Results could help identify key targets for genetic engineering of plants more suited to microgravity.
Easier drug delivery
The Faraday Research Facility is a multipurpose unit that uses the space station’s EXPRESS payload rack systems, which enable quick, simple integration of multiple payloads . On this first flight, the facility hosts a Houston Methodist Research Institute experiment and two STEM collaborations, including “Making Space for Girls” with the Girl Scouts of Citrus Council in Orlando, Florida.
The Faraday Nanofluidic Implant Communication Experiment (Faraday-NICE) tests an implantable, remote-controlled drug delivery system using sealed containers of saline solution as surrogate test subjects. The device could provide an alternative to bulky, cumbersome infusion pumps, a possible game changer for long-term management of chronic conditions on Earth. Remote-controlled drug delivery could simplify administration for people with limitations.
A partnership between Faraday and Girls Scouts allows troops to play a role in conducting the control experiments, including providing them with images of the same experiments that are happening in space. The studies involve plant growth, ant colonization, and the brine shrimp lifecycle.
These and other cutting-edge investigations join the hundreds of ongoing experiments in biology and biotechnology, physical sciences, and Earth and space science aboard the International Space Station. Advances in these areas will help keep astronauts healthy during long-duration space travel and demonstrate technologies for future human and robotic exploration beyond low-Earth orbit to the Moon and Mars through NASA’s Artemis program. To learn more, check out our SpaceX CRS-23 research highlights story.
Learn more about SpaceX’s missions for NASA at:
Get breaking news, images and features from the space station on Instagram, Facebook, and Twitter.
6 responses to “Cutting-Edge Science Launches on NASA’s SpaceX Cargo Resupply Mission”
Leave a Reply
You must be logged in to post a comment.
Congratulations to SpaceX for a successful flight!
Another new problem with freefall conditions?
Of course, but of course. Seems like every year some new syndrome is discovered, to add to the ever growing list of maladies.
SLS delenda est
Nope, it has been a problem with micro-gravity that has been known for years and researched….
https://lasvegassun.com/new…
‘Space blindness’ must be solved before mission to Mars, scientist says
By Ray Hagar, Nevada Newsmakers
Saturday, Dec. 2, 2017 | 2 a.m.
“One of the things we discovered in the last 10 years is that some astronauts, when they go into space, actually have vision loss,” said Julie Robinson, the chief scientist of the ISS. “A few of those astronauts have permanent vision loss that isn’t reversed when they turn to Earth.”
It appears that the longer you are in micro-gravity the worst it is, which is why it wasn’t noticed in the Apollo era.
By focusing on a tree you missed the forest I was pointing at.
It should be clear to one and all, there is no magic bullet to solving the dangerous (and sometimes permanent) effects of zero gravity on the human body. For every mitigation developed during our experience on ISS, it seems two new intractable syndromes are discovered. No exercise regime nor witches brew of drugs is going to fix all the problem within a reasonable amount of time, say within the next twenty years.
In my opinion, it is a waste of time to continue searching for that magic bullet. Instead efforts should be redirected towards discovering at which level of low gravity human health can sustain over long term. In addition, manned interplanetary spacecraft design will probably have to accommodate spinning of part or all of the vehicle for artificial gravity.
SLS delenda est
I think we might have a disagreement, depending on interpretations.
I agree that partial gravity should be investigated to find the sweet spot that maintains health at minimum cost. Which means that if Lunar or Mars gee is good enough, then the expense of a full gee rotational gravity is not required.
I disagree on stopping the search for various “magic” solutions. I do think that it shouldn’t be the sole mitigation type under investigation. Investigating “magic” solutions is a very different argument from having it from freeze out all alternative investigations, which I believe is your meaning.
I agree, which is why the space communities I have been proposing are all 1G, even those on the surfaces of Celestial Bodies like the Moon, Mars, Martian Moons and Asteroids. Humans, along with the majority of animals and plants likely function best in the conditions of atmospheric composition, pressure, radiation and gravity found on the Earth’s surface. It’s easier to use an engineering solution than trying to adapt the human body. The one big question is the long term tolerance limit for Coriolis Forces.