A Look Back at the Space Year That Was

Total solar eclipse photographed from NASA Armstrong’s Gulfstream III. (Credit: (NASA/Carla Thomas)

by Douglas Messier
Managing Editor

I realize it’s a bit late, but here’s a look back at the major developments in space in 2017.

I know that I’m probably forgetting something, or several somethings or someones. Fortunately, I have eagle-eyed readers who really seem to enjoy telling me just how much I’ve screwed up. Some of them a little too much….

So, have at it!  Do your worst, eagle-eyed readers!

(more…)

SOFIA Confirms Nearby Planetary System is Similar to Our Own

Artist’s illustration of the Epsilon Eridani system showing Epsilon Eridani b. In the right foreground, a Jupiter-mass planet is shown orbiting its parent star at the outside edge of an asteroid belt. In the background can be seen another narrow asteroid or comet belt plus an outermost belt similar in size to our solar system’s Kuiper Belt. The similarity of the structure of the Epsilon Eridani system to our solar system is remarkable, although Epsilon Eridani is much younger than our sun. SOFIA observations confirmed the existence of the asteroid belt adjacent to the orbit of the Jovian planet. (Credits: NASA/SOFIA/Lynette Cook)

PALMDALE, Calif. (NASA PR) — NASA’s flying observatory, the Stratospheric Observatory for Infrared Astronomy, SOFIA, recently completed a detailed study of a nearby planetary system. The investigations confirmed that this nearby planetary system has an architecture remarkably similar to that of our solar system.

Located 10.5 light-years away in the southern hemisphere of the constellation Eridanus, the star Epsilon Eridani, eps Eri for short, is the closest planetary system around a star similar to the early sun. It is a prime location to research how planets form around stars like our sun, and is also the storied location of the Babylon 5 space station in the science fictional television series of the same name.

(more…)

NASA Missions Have Their Eyes Peeled on Pluto

This image of Pluto from New Horizons’ Long Range Reconnaissance Imager (LORRI) was received on July 8, and has been combined with lower-resolution color information from the Ralph instrument. (Credits: NASA-JHUAPL-SWRI)
This image of Pluto from New Horizons’ Long Range Reconnaissance Imager (LORRI) was received on July 8, and has been combined with lower-resolution color information from the Ralph instrument. (Credits: NASA-JHUAPL-SWRI)

WASHINGTON (NASA PR) — What’s icy, has “wobbly” potato-shaped moons, and is arguably the world’s favorite dwarf planet? The answer is Pluto, and NASA’s New Horizons is speeding towards the edge of our solar system for a July 14 flyby. It won’t be making observations alone; NASA’s fleet of observatories will be busy gathering data before and after to help piece together what we know about Pluto, and what features New Horizons data might help explain.

“NASA is aiming some of our most powerful space observatories at Pluto,” said Paul Hertz, Astrophysics Division Director at NASA Headquarters, Washington. “With their unique capabilities combined, we will have a multi-faceted view of the Pluto system complementary to New Horizons data.”

(more…)

Spitzer Telescope Finds Organics and Water Where New Planets May Grow

NASA PRESS RELEASE
March 13, 2008

Researchers using NASA’s Spitzer Space Telescope have discovered large amounts of simple organic gases and water vapor in a possible planet-forming region around an infant star, along with evidence that these molecules were created there. They’ve also found water in the same zone around two other young stars.

By pushing the telescope’s capabilities to a new level, astronomers now have a better view of the earliest stages of planetary formation, which may help shed light on the origins of our own solar system and the potential for life to develop in others.

John Carr of the Naval Research Laboratory, Washington, and Joan Najita of the National Optical Astronomy Observatory, Tucson, Ariz., developed a new technique using Spitzer’s infrared spectrograph to measure and analyze the chemical composition of the gases within protoplanetary disks. These are flattened disks of gas and dust that encircle young stars. Scientists believe they provide the building materials for planets and moons and eventually, over millions of years, evolve into orbiting planetary systems like our own.

“Most of the material within the disks is gas,” said Carr, “but until now it has been difficult to study the gas composition in the regions where planets should form. Much more attention has been given to the solid dust particles, which are easier to observe.”

(more…)