New CubeSat Propulsion System Uses Water as Propellant

Purdue University graduate student Katherine Fowee and postdoctoral research associate Anthony Cofer work on a new micropropulsion system for miniature satellites called CubeSats. (Credit: Purdue University/Erin Easterling)

WEST LAFAYETTE, Ind. (Purdue University PR)  – A new type of micropropulsion system for miniature satellites called CubeSats uses an innovative design of tiny nozzles that release precise bursts of water vapor to maneuver the spacecraft.

(more…)

NASA Seeks Industry’s Concepts for Deep Space Power, Propulsion

Credit: NASA

WASHINGTON, DC (NASA PR) — NASA has issued two documents to help the agency identify current capabilities, as well as areas requiring additional study for advanced power and propulsion spacecraft within the American aerospace industry. This advanced technology is needed to support NASA’s deep space exploration goals.

(more…)

Test Firings Begin on Japanese LE-5B-3 Engine

Test firing of LE-5B-3 engine. (Credit: JAXA)

TOKYO (JAXA PR) — JAXA tested LE-5B-3, the liquid rocket engine designed to propel the second stage of H3 Launch Vehicle now under development. LE-5B-3 enhances the LE-5B-2 engine that likewise boosts the second stage of H-IIA and H-IIB. LE-5B-2 has earned the time-tested record of reliability after scores of successful H-II launches. Improvements are being made to lower the cost of LE-5B-3, without compensating the dynamics to blast off H3, a larger rocket and to sustain its flight.

Following the design improvements for affordability and performance which reached the desired level in August 2016, JAXA successfully conducted the test of the liquid hydrogen turbopump in December 2016 through January 2017. The liquid hydrogen turbopump — equivalent of the heart of a human body — draws in the propellants into the engine thrust chamber.

Since March 2017, the first engine with the hydrogen turbopump, assembled for certification was completed, kicking off its preliminary firing testing. The test is proceeding on schedule. By September 2017, test results will expectedly prove the soundness of the basic design improvements.

Save

House to Hold Hearing on In-Space Propulsion


House of Representatives

Space Subcommittee Hearing

In-Space Propulsion: Strategic Choices and Options
Date: Thursday, June 29, 2017 – 10:00am
Location: 2318 Rayburn House Office Building

Hearing Purpose
NASA is pursuing several in-space propulsion technologies to advance not only human exploration, but also uncrewed spacecraft operations. The hearing will explore NASA’s current portfolio of investments in in-space propulsion technologies, the state of the various technologies, and how they fit into future space architectures.

Witnesses

  • Mr. William Gerstenmaier — Associate Administrator, Human Exploration and Operations Directorate, NASA
  • Mr. Stephen Jurczyk — Associate Administrator, Space Technology Mission Directorate, NASA
  • Dr. Mitchell Walker — Chair, Electric Propulsion Technical Committee, American Institute of Aeronautics and Astronautics (AIAA)
  • Dr. Franklin Chang-Diaz — Founder and CEO, Ad Astra Rocket Company
  • Mr. Joe Cassady — Executive Director for Space, Washington Operations, Aerojet Rocketdyne
  • Dr. Anthony Pancotti — Director of Propulsion Research, MSNW LLC

NIAC Phase I Award: Space Studies Institute Mach Effects Thruster

Mach Effects for In Space Propulsion: Interstellar Mission. (Credit: Heidi Fearn)

Mach Effects for In Space Propulsion: Interstellar Mission
NIAC Phase I Award

Heidi Fearn
Space Studies Institute
Mojave, Calif.

Value: Approximately $125,000
Length of Study: 9 months

Description

We propose to study the implementation of an innovative thrust producing technology for use in NASA missions involving in space main propulsion.

Mach Effect Thruster (MET) propulsion is based on peer-reviewed, technically credible physics. Mach effects are transient variations in the rest masses of objects that simultaneously experience accelerations and internal energy changes.

(more…)

ZERO-G Research Flights Advance Technology for Future Deep-Space Missions


ORLANDO, Fla,
April 6, 2017 (Zero-G PR) – As part of NASA’s Flight Opportunities Program, Zero Gravity Corporation (ZERO-G®) recently worked with research groups from University of Florida, Carthage College and University of Maryland to validate technology designed to further humanity’s reach into space. A collection of flights on G-FORCE ONE, ZERO-G’s specially modified Boeing 727, gave researchers the chance to run experiments and test innovative systems in the only FAA-approved, manned microgravity lab on Earth.

(more…)

China Claims Testing of EmDrive in Space

EmDrive (Credit: Satellite Propulsion Research Ltd.)
EmDrive (Credit: Satellite Propulsion Research Ltd.)

China claims it is testing an EmDrive propulsion system in space.

Dr. Chen Yue, Director of Commercial Satellite Technology for the China Academy of Space Technology (CAST) announced on December 10, 2016 that not only has China successfully tested EmDrives technology in its laboratories, but that a proof-of-concept is currently undergoing zero-g testing in orbit (according to the International Business Times, this test is taking place on the Tiangong 2 space station).

Unlike traditional engines (such as combustion and ion engines) that expel mass from the system to produce thrust, reactionless engines like the EmDrive use only electricity to generate movement. In the EmDrive, first proposed by Roger Shawyer, the microwave cavity is an asymmetric container, such as a truncated cone, with one end much larger than the other. At the narrower end, a source of electromagnetic energy (such as a magnetron) bombards the cavity with microwaves. These waves are contained and bounce off the cavity’s walls, creating electromagnetic resonance. Due to the imbalanced resonance from the complex geometry of a truncated cone, the electromagnetic field in the EmDrive becomes directionally dependent (anisotropic). In this case, the anisotropic electromagnetic field ‘pushes’ the EmDrive away from the direction of the cavity’s larger area end.

Read the full story.

NASA Peer-reviewed Paper on Controversial EM Drive Published

EmDrive (Credit: Satellite Propulsion Research Ltd.)
EmDrive (Credit: Satellite Propulsion Research Ltd.)

A long-awaited, peer-reviewed scientific paper has been published that indicates the controversial EM (Electromagnetic) Drive appears to work even though it apparently violates one of the laws of motion.

In case you’ve missed the hype, the EM Drive, or Electromagnetic Drive, is a propulsion system first proposed by British inventor Roger Shawyer back in 1999.

Instead of using heavy, inefficient rocket fuel, it bounces microwaves back and forth inside a cone-shaped metal cavity to generate thrust.

According to Shawyer’s calculations, the EM Drive could be so efficient that it could power us to Mars in just 70 days.

But, there’s a not-small problem with the system. It defies Newton’s third law, which states that everything must have an equal and opposite reaction….

Yet in test after test it continues to work. Last year, NASA’s Eagleworks Laboratory team got their hands on an EM Drive to try to figure out once and for all what was going on.

The new peer-reviewed paper is titled “Measurement of Impulsive Thrust from a Closed Radio-Frequency Cavity in Vacuum“, and has been published online as an open access ‘article in advance’ in the American Institute of Aeronautics and Astronautics (AIAA)’s Journal of Propulsion and Power. It’ll appear in the December print edition.

Read the full story.

Save

Save

Save

NASA Microthrusters Achieve Success on ESA’s LISA Pathfinder

An artist's concept of the European Space Agency's LISA Pathfinder spacecraft, designed to pave the way for a mission detecting gravitational waves. NASA/JPL developed a thruster system on board. (Credit: ESA)
An artist’s concept of the European Space Agency’s LISA Pathfinder spacecraft, designed to pave the way for a mission detecting gravitational waves. NASA/JPL developed a thruster system on board. (Credit: ESA)

PASADENA, Calif. (NASA PR) — A next-generation technology demonstration mission has just passed a big milestone.

The Space Technology 7 Disturbance Reduction System (ST7-DRS) is a system of thrusters, advanced avionics and software managed by NASA’s Jet Propulsion Laboratory, Pasadena, California. It has been flying on the European Space Agency’s LISA Pathfinder spacecraft, which launched from Kourou, French Guiana on Dec. 3, 2015 GMT (Dec. 2 PST). As of Oct. 17, the system had logged roughly 1,400 hours of in-flight operations and met 100 percent of its mission goals.

(more…)

SSI Holds Breakthrough Propulsion Workshop

Video Caption: Space Studies Institute President Gary C Hudson’s short intro session on the first morning of the Breakthrough Propulsion Workshop that took place in Estes Park, Colorado September 20th-23rd 2016.

EM Drives, The Mach Effect, testing practices and requirements of controversial scientific engineering were just a few of the topics presented and debated at this very special gathering of theoretical and experimental physicists and engineers who work on the cutting edge.

This short video gives an introduction to SSI’s involvement in the Mach Effect research following a brief explanation of the goals of The Space Studies Institute.

Over time, more videos and documentation from the workshop will be released… stay tuned!

UK Space Agency Invests in National Propulsion Test Facility

UK_space_agencyFARNSBOROUGH, UK (UKSA PR) — The UK Space Agency is investing £4.12m in a National Propulsion Test Facility, giving the UK a new facility for space technology testing. The facility will allow UK companies and academia to test and develop space propulsion engines. The planned facility will be based at Westcott in Buckinghamshire, with its strong history of rocketry research for defence and space development, building on existing facilities.

The UK Space Agency investment will add new capabilities for the UK space sector. Government funding will:

  • Create a new vacuum facility at the Westcott propulsion test site. When used together with the existing industry owned rocket firing test cells, this will allow the simulation of high altitude testing of thrusters up to 2kN.
  • Upgrade an existing industry owned test chamber to improve capabilities in the 25N thrust range.
  • Open the facilities, alongside a smaller 1N thruster test chamber at the site, for the community to use. The UK’s Science and Technology Facilities Council (STFC), through its RAL Space facility will act as an independent broker for facility access. The European Space Agency (ESA) will be advising and overseeing the initial detailed design phase before a review in the autumn to move to full implementation.

(more…)

NIAC Focus: Directed Energy for Interstellar Flight

Artist rendering of the Directed Energy Interstellar Study. (Credit: P. Lubin)
Artist rendering of the Directed Energy Interstellar Study. (Credit: P. Lubin)

Directed Energy Interstellar Study
NASA Innovative Advance Concepts Phase II Award

Philip Lubin
University of California, Santa Barbara

We propose to expand our investigations started in our NIAC Phase I of using directed energy to allow the achievement of relativistic flight to pave the way to the first interstellar missions. All of the current conventional propulsion systems are incapable of reaching the high speeds necessary to enable interstellar flight. Directed energy offers a path forward that, while difficult, is feasible. It is not an easy path and it does have many milestones to cross in order to get to the point of achieving the speeds needed.

Along the roadmap we propose are important and useful “waypoints” that both allow testing and feed back to the larger design but are also useful for many applications. The consequences of this program are truly transformative not only for achieving relativistic flight for small probes but also for larger spacecraft at lower speeds suitable for rapid interplanetary travel.

The Phase II work will consist of refining our roadmap and building and testing a small phased array prototype to test many of the concepts developed in the Phase I. We will also further our work on the wafer scale spacecraft design including work on the critical integrated laser communications system. We will also explore and test the inverse mode of using the array for reception which is critical to receiving the laser communications from the spacecraft.

JAXA Outlines Plans for H3 Launch Vehicle

Artist's conception of H3 rocket. (Credit: JAXA)
Artist’s conception of H3 rocket. (Credit: JAXA)

TOKYO (JAXA PR) — The H3 Launch Vehicle is a liquid propellant launch vehicle currently under development. This is the first full-scale development of the 21st century. The aim of this development is to respond to launch demands from global customers. Based on our operation experience and the reliability of launch vehicles, we will further improve the payload launch capability and reduce the launch price to triumph among international competition in the commercial launch market. We are developing the H3 with the goal of a maiden launch in Japan Fiscal Year 2020 as a mainstay launch vehicle.
(more…)

NIAC Focus: Plasmonic Force Propulsion

Schematic of proposed plasmonic force propulsion concept. (Credit: J. Rovey)
Schematic of proposed plasmonic force propulsion concept. (Credit: J. Rovey)

Experimental Demonstration and System Analysis for Plasmonic Force Propulsion
NASA Innovative Advance Concepts Phase II Award

Joshua Rovey
University of Missouri

One of NASA’s strategic goals is expanding scientific understanding of the Earth and the universe. NASA envisions a broad class of scientific missions where extremely fine pointing and positioning of spacecraft is required, such as a single Earth observing spacecraft, deployable x-ray telescopes, exoplanet observatories, and constellations of spacecraft for Earth and deep space observations.

(more…)

NASA Selects Propulsion SBIRs & STTRs

NASA LOGOAs I was looking through NASA’s recent small business selection announcement for propulsion-related projects, I have found that the space agency has selected 29 Small Business Innovation Research and 8 Small Business Technology Transfer proposals for funding.

The proposals cover a wide range of areas, including in-space propulsion for CubeSats to technologies for new launch vehicles. Several proposals are also focused on in-space propellant depots.

A list of the selected projects with links to the proposals follows.

(more…)