A Look at NASA’s Plans to Explore the Moon

Image Credit: NASA/Goddard/Arizona State University

Statement of Jason Crusan
Director, Advanced Exploration Systems Division
Human Exploration and Operations Mission Directorate
National Aeronautics and Space Administration

before the

Subcommittee on Space
Committee on Science, Space, and Technology
U. S. House of Representatives


Lunar CATALYST: Promoting Private Sector Robotic Exploration of the Moon

As part of the Agency’s overall strategy to conduct deep space exploration, NASA is also supporting the development of commercial lunar exploration. In 2014, NASA introduced an initiative called Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST). The purpose of the initiative is to encourage the development of U.S. private-sector robotic lunar landers capable of successfully delivering payloads to the lunar surface using U.S. commercial launch capabilities.


System Tests Prepare Orion for Deep Space Exploration

The Orion crew module for NASA’s Exploration Mission 1 (EM-1) is secured in a work station in the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. The spacecraft is being prepared for its first integrated flight atop the Space Launch System rocket on Exploration Mission-1. (Credit: NASA/Leif Heimbold)

By Staff Writers
NASA’s John F. Kennedy Space Center

Hurtling beyond the Moon at a speedy 25,000 mph for a three-week mission requires a space processor capable of operating with guaranteed reliability, in a high radiation environment tens of thousands of miles in deep space, at 480,000,000 instructions per second to execute thousands of commands and sequences for controlling the hundreds of spacecraft systems and components to ensure crew safety and mission success.


NASA Will Not Fly Crew on First SLS/Orion Mission

An expanded view of the next configuration of NASA’s Space Launch System rocket, including the four RL10 engines. (Credit: NASA)

NASA officials announced on Friday the first combined flight of the Space Launch System and Orion spacecraft, known as Exploration Mission 1 (EM-1), will be conducted without a crew as originally planned. They also said the flight test will slip from 2018 to 2019.


NASA Looks to Commercialize Solar Sail Technology

A concept image of the Near-Earth Asteroid Scout mission, one of 11 missions that will be secondary payloads to the first test flight of NASA's Space Launch System. (Credit: NASA)
A concept image of the Near-Earth Asteroid Scout mission, one of 11 missions that will be secondary payloads to the first test flight of NASA’s Space Launch System. (Credit: NASA)

NASA CubeSat-Scale Solar Sail for Space Propulsion
Solicitation Number: NNM16042116
Agency: National Aeronautics and Space Administration
Office: Marshall Space Flight Center
Location: Office of Procurement


A cubesat-scale solar sail propulsion system is being developed at NASA Marshall Space Flight Center to provide propulsion for a 6U interplanetary CubeSat to be used for the Near Earth Asteroid Scout (NEAS) project. NASA MSFC desires for the solar sail technology and design being developed for the NEAS mission to be commercially available after the completion and delivery of the flight system hardware in 2018. To further that goal, NASA MSFC seeks to provide the solar sail propulsion system design to interested commercial entities. It is anticipated that there may be follow-on missions using the NEA Scout sail system following successful completion of the NEA Scout project.


CubeSat to Study Solar Particles Set for EM-1 Launch

CuSPP+ (Credit: SwRI)
CuSPP+ (Credit: SwRI)

GREENBELT, Md. (NASA PR) —  Another CubeSat mission involving significant contributions from Goddard scientists has won a berth on NASA’s Exploration Mission-1 (EM-1) in 2018. The pint-size spacecraft will be one of the first to venture into interplanetary space.