NASA Selects Astrobotic for 2 Small Business Awards to Improve Spacecraft Operations

A rendering of Astrobotic’s Peregrine lunar lander is shown, with NASA’s three water-detecting payloads (MSolo, NSS, and NIRVSS) highlighted in blue. (Credit: Astrobotic Technology)

by Douglas Messier
Managing Editor

NASA has selected Astrobotic Technology for two Small Business Innovation Research (SBIR) awards to develop technology to help spacecraft improve proximity operations in orbit and avoid hazards when landing on other worlds.

(more…)

NASA JSC Receives Griffin Lunar Lander Model for Rover Testing

HOUSTON (Astrobotic Technology PR) — After being transported more than 1,300 miles, Astrobotic’s Griffin Lander Analog Model (GLAM) arrived at NASA Johnson Space Center (JSC) early this month. This model is an analog prototype of the Griffin lander that will deliver NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) to the Moon in 2023. Astrobotic designed and constructed the GLAM at their “Moon Base” headquarters in Pittsburgh, PA.

(more…)

Mission Patch Revealed for Astrobotic’s Peregrine Mission One

Set to launch later this year, the Peregrine team reveals a meaningful mission patch design for the world’s first commercial lunar landing

PITTSBURGH (Astrobotic PR ) — Astrobotic’s Peregrine Mission One (PM1) is set to be the first US lander (and first commercial lunar lander) to touch down on the Moon since the Apollo missions more than 50 years ago. In anticipation of Peregrine’s launch into space later this year, Astrobotic has released a commemorative mission patch filled with some meaningful Easter (or more appropriately, peregrine) eggs.

The focal point of the patch is the peregrine falcon, majestically jetting towards its lunar destination. There are seven craters in the patch’s Moon design, representing the seven nations that are joining Astrobotic on its mission. The phase on the patch’s Moon graphic matches the real Moon’s phase that people will see at the time of Peregrine’s touchdown.

(more…)

Astrobotic Selects Agile Space Industries to Provide Attitude Control Thrusters for Lunar Missions

NASA’s Volatiles Investigating Polar Exploration Rover, or VIPER, is a mobile robot that will roam around the Moon’s south pole looking for water ice. The VIPER mission will give us surface-level detail of where the water is and how much is available for us to use. This will bring us a significant step closer towards NASA’s ultimate goal of a sustainable, long-term presence on the Moon – making it possible to eventually explore Mars and beyond. (Credit: NASA Ames/Daniel Rutter)

DURANGO, Colo., February 16, 2021 — Polar Moonshots are in a league of their own when it comes to the level of difficulty. In order to overcome this historically daunting challenge for the first-ever Griffin Mission transporting NASA’s VIPER rover to the Moon’s South Pole, NASA’s Commercial Lunar Payload Services Program selectee Astrobotic is enlisting Agile Space Industries to help them go where no American spacecraft has gone before. Astrobotic’s Griffin Mission lander is relying on Attitude Control Thrusters (“ACT”s), from Agile to provide steering capabilities in the vacuum of space. Agile’s innovative custom propulsion solutions utilize 3D printing of exotic metal alloys to provide unprecedented performance, along with minimized mass and cost.

(more…)

Astrobotic Selects Lander Engines & More for Griffin/VIPER Mission

PITTSBURGH, February 16, 2020 (Astrobotic PR) — Astrobotic’s Griffin Mission One (GM1) team has selected Agile Space Industries for Attitude Control System (ACS) thrusters and Frontier Aerospace for axial engines for their Griffin lunar lander. Astrobotic’s Griffin will deliver NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) to the South Pole of the Moon in late 2023. Upon landing, VIPER will map the presence of water ice on the Moon.

(more…)

Lunar Traffic to Pick Up as NASA Readies for Robotic Commercial Moon Deliveries

This photograph of a nearly full Moon was taken from the Apollo 8 spacecraft at a point above 70 degrees east longitude. Mare Crisium, the circular, dark-colored area near the center, is near the eastern edge of the Moon as viewed from Earth. (Credits: NASA)

HOUSTON (NASA PR) — NASA is working on various science instruments and technology experiments from the agency that will operate on the Moon once American companies on Commercial Lunar Payload Services  (CLPS) contracts deliver them to the lunar surface. Through CLPS flights, NASA is buying a complete commercial robotic lunar delivery service and does not provide launch services, own the lander or lead landing operations.

(more…)

Astrobotic Selects Navigation Doppler Lidar from Psionic for Mission to Deliver VIPER to the Lunar Surface

A visual rendering of Griffin utilizing Navigation Doppler Lidar sensor to guide landing on the lunar surface. (Credit: Psionic LLC)

Navigation Doppler Lidar chosen for high accuracy and NASA heritage for 2023 CLPS mission to search for water on the Moon

PITTSBURGH, Pa. and HAMPTON, Va. (Astrobotic PR) — Astrobotic today announced they have selected Navigation Doppler Lidar (NDL) from Psionic for their mission in late 2023 to deliver NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) to the South Pole of the Moon.

The NDL serves as a critical sensor element as part of the Griffin Lander’s Guidance, Navigation, and Control (GN&C) system to ensure a safe, precise landing. In June 2020, NASA awarded a $199.5 million contract to Astrobotic under its Commercial Lunar Payload Services (CLPS) initiative. 

(more…)

Astrobotic Completes Successful Testing with NASA’s Water Detecting Payloads

A rendering of Astrobotic’s Peregrine lunar lander is shown, with NASA’s three water-detecting payloads (MSolo, NSS, and NIRVSS) highlighted in blue. (Credit: Astrobotic Technology)

PITTSBURGH (Astrobotic PR) — Three of NASA’s payloads set to fly aboard Astrobotic’s Peregrine lunar lander in 2021 have successfully completed preliminary interface simulation testing between Astrobotic, NASA’s Ames Research Center, and NASA’s Kennedy Space Center payload teams.

(more…)

NASA Perseveres Through Pandemic to Complete Successful 2020

WASHINGTON (NASA PR) — In 2020, NASA made significant progress on America’s Moon to Mars exploration strategy, met mission objectives for the Artemis program, achieved significant scientific advancements to benefit humanity, and returned human spaceflight capabilities to the United States, all while agency teams acted quickly to assist the national COVID-19 response.

(more…)

Commercial CubeRover Test Shows How NASA Investments Mature Space Tech

The Astrobotic CubeRover traverses the terrain in the Granular Mechanics and Regolith Operations Laboratory regolith bin at NASA’s Kennedy Space Center in Florida on Dec. 10, 2020. The regolith bin simulates the mechanical properties of the Moon’s surface. NASA and Astrobotic employees put the CubeRover through a series of more than 150 mobility tests over several days to evaluate and improve wheel design. (Credits: NASA/Kim Shiflett)

by Linda Herridge
NASA’s John F. Kennedy Space Center

Researchers at NASA’s Kennedy Space Center in Florida recently put a new, small robotic rover through its paces inside a 120-ton bin of regolith rock and dust that simulates the lunar surface.

The four-wheeled CubeRover rolled over dunes of abrasive dust, turned in place, and then trundled up and down steep trench walls within the Granular Mechanics and Regolith Operations (GMRO) laboratory as it performed more than 150 mobility tests. The rover’s creators, from Astrobotic Technology of Pittsburgh, worked alongside Kennedy’s Swamp Works team, assessing the robot’s maneuverability and how its sensor, motor, and power systems operated in the dusty environment.

(more…)

Astrobotic’s CubeRover Completes Successful Mobility Testing

PITTSBURGH (Astrobotic PR) — Astrobotic’s CubeRover successfully completed more than 150 mobility tests inside a 120-ton enclosure designed to mimic the surface of the Moon. These tests will further inform the final wheel design of all three sizes of the scalable CubeRover line.

(more…)

NASA Seeks More Lunar Science, Technology Experiments for Artemis Program

The Moon as seen from the International Space Station (Credit: ESA/NASA)

WASHINGTON (NASA PR) — With five robotic flights to the Moon already booked through 2023, and a sixth award expected soon, NASA is seeking suites of new science investigations and technology experiments for future commercial lunar deliveries as part of the Artemis program.

(more…)

Astrobotic Wins $5.7 Million NASA Tipping Point Contract for Wireless Charging on the Moon

Astrobotic, WiBotic, Bosch, University of Washington, NASA GRC to develop Wireless Ultra-Fast Proximity Charging for Critical Space Applications

PITTSBURGH (Astrobotic PR) — Astrobotic wins $5.7 million NASA Tipping Point contract to lead Bosch, WiBotic, the University of Washington, and the NASA Glenn Research Center (GRC) in developing a product line of lightweight proximity chargers. These ultrafast wireless chargers will enable critical lunar applications for both humans and robots.

(more…)

Astrobotic Unveils New Headquarters in Pittsburgh

Officials cut a ceremonial ribbon at Astrobotic’s new headquarters. (Credit: Astrobotic Technology)

Astrobotic, space robotics company, opens one of the largest private facilities in the world dedicated to lunar operations

PITTSBURGH (Astrobotic PR) — Astrobotic officially opened its new headquarters in Pittsburgh in a ribbon-cutting ceremony on Monday. The 47,000 square foot complex is the largest private facility in the world dedicated to lunar logistics. Astrobotic’s Peregrine and Griffin lunar landers will be built on-site, with Peregrine set to become the first commercial mission to the Moon, and the first American lander on the Moon since the Apollo missions.

(more…)