Locations Named on Asteroid Ryugu

Asteroid Ryugu photographed by Japan’s Hayabusa2 spacecraft. (Credit: JAXA)

TOKYO (JAXA PR) — Place names for locations on the surface of Ryugu were discussed by Division F (Planetary Systems and Bioastronomy) of the International Astronomical Union (IAU) Working Group for Planetary System Nomenclature (hereafter IAU WG) and approved in December 2018. We will introduce the place names in this article and the background to their selection.

(more…)

Updates on JAXA’s Hayabusa2 Mission to Asteroid Ryugu

Figure 2: Image of the surface of Ryugu captured with the ONC-W1 at an altitude of about 47m. The image was taken on October 15, 2018 at 22:45 JST. The red circle indicates the candidate point for touchdown, L08-B. (Credit: JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu, AIST)

Hayabusa2 Status (2019.1.1 – 6)
Jan. 10, 2019

Our first Hayabusa2 operation of the year was carried out on 1/4. Based on observational data collected during the solar conjunction, we had recalculated the orbit of Ryugu. This recalculated orbit was used after returning from solar conjunction to resume the home position at an altitude of 20km above the asteroid surface. We were able to confirm that using this new orbit allows us to more stably maintain the home position.

Hayabusa2 status (2018.12.24 – 31)
Jan. 04, 2019

This week, Hayabusa2 returned perfectly from solar conjunction to hover back at the home position at 20km from the asteroid. Although this situation was similar to when we approached the asteroid in June, it was a tense operation as there was no room for mistakes.

However, the spacecraft was able to return to its orbit exactly as planned. New Year’s Eve on the 31st December was the last operation of the year. The distance to the asteroid could be measured once again with LIDAR and we returned to normal operations without any problems. The beginning of the New Year is a holiday in Japan, but full-scale operations will begin with adjustments for the 2019 touchdown operation.

Latest Updates From NASA on OSIRIS-REx’s Mission to Asteroid Bennu

This mosaic image of asteroid Bennu is composed of 12 PolyCam images collected on Dec. 2, 2018, by the OSIRIS-REx spacecraft from a range of 15 miles (24 km). (Credits: NASA/University of Arizona)

January 14, 2019

The OSIRIS-REx spacecraft continues to orbit Bennu at an altitude ranging from 1.6 to 2.1 km, with an orbital period of 61 hours. The spacecraft has completed 5.5 orbits of Bennu to date. The one-way communication time from the spacecraft back to Earth is around 5.5 minutes.

On the ground, the mission held its 14th Science Team Meeting at the University of Arizona last week. This was the first science team meeting since the spacecraft’s arrival at the asteroid, which means it was also the first gathering where the entire science team was able to work with detailed Bennu data from the spacecraft.

January 07, 2019

On Dec. 29 and 31, the OSIRIS-REx spacecraft successfully completed the two maneuvers required to enter orbit about Bennu. The accurate performance of these orbit insertion maneuvers, as well as the continued accurate navigation performance since orbit insertion, allowed for the wave-off of several planned updates to the spacecraft’s orbit determination (OD). The mission’s navigation team will continue to study OD performance over the first few weeks of spacecraft orbits to further refine and predict orbital operations – which will eventually allow the team to reduce the trim burn schedule.

The first orbit of Bennu, which started on Dec. 31, ended 61.4 hours later on Jan. 3. The spacecraft will continue orbiting the asteroid through mid-February.

Steam-Powered Asteroid Hoppers Developed through UCF Collaboration

By using steam rather than fuel, the World Is Not Enough (WINE) spacecraft prototype can theoretically explore “forever,” as long as water and sufficiently low gravity is present. (Credit: UCF)

By using steam rather than fuel, the microwave-size spacecraft prototype
can theoretically explore celestial objects “forever.”

By Zenaida Gonzalez Kotala
University of Central Florida News

Using steam to propel a spacecraft from asteroid to asteroid is now possible, thanks to a collaboration between a private space company and the University of Central Florida.

UCF planetary research scientist Phil Metzger worked with Honeybee Robotics of Pasadena, California, which developed the World Is Not Enough spacecraft prototype that extracts water from asteroids or other planetary bodies to generate steam and propel itself to its next mining target.

(more…)

CubeSats Joining Hera Mission to Asteroid System

Hera at Didymos (Credit: ESA–ScienceOffice.org)

PARIS (ESA PR) — When ESA’s planned Hera mission journeys to its target binary asteroid system, it will not be alone. The spacecraft will carry two tiny CubeSats for deployment around – and eventual landing on – the Didymos asteroids. Each companion spacecraft will be small enough to fit inside a briefcase, as compared to the desk-sized Hera.

(more…)

Deep Space Industries Acquired by Bradford Space

SAN JOSE, Calif., January 2, 2019 (Bradford Space PR) — Bradford Space, a U.S.-owned space systems manufacturer with locations in the Netherlands and Sweden, announced today that it has acquired control over Deep Space Industries, Inc., often known as DSI. In becoming part of the Bradford group, DSI will become Bradford’s first substantial U.S. presence, providing an outlet and location for activities in the U.S. space market.

Founded in 2012 as an ambitious effort to mine the resources of the asteroids, DSI has more recently become known for the production of the Comet water-based electrothermal propulsion system. Four Comet systems are currently on orbit on spacecraft operated by Capella Space and HawkEye 360. Other customers of DSI include LeoStella, a joint venture of Spaceflight and Thales Alenia Space, and the Space Flight Laboratory, a satellite development group inside the University of Toronto.

(more…)

NASA’s OSIRIS-REx Spacecraft Enters Close Orbit Around Bennu, Breaking Record

This mosaic image of asteroid Bennu is composed of 12 PolyCam images collected on Dec. 2, 2018, by the OSIRIS-REx spacecraft from a range of 15 miles (24 km). (Credits: NASA/University of Arizona)

TUCSON (University of Arizona PR) — At 2:43 p.m. EST on December 31, while many on Earth prepared to welcome the New Year, NASA’s OSIRIS-REx spacecraft, 70 million miles (110 million kilometers) away, carried out a single, eight-second burn of its thrusters – and broke a space exploration record. The spacecraft entered into orbit around the asteroid Bennu, and made Bennu the smallest object ever to be orbited by a spacecraft.

(more…)

Japan’s AKARI Space Telescope Detects Water in a Number of Asteroids

Figure 1: An artist’s illustration of the near-infrared spectroscopic observation of asteroids with the infrared satellite AKARI. By using a space-borne telescope, the team was able to successfully detect the presence of water in many asteroids.

TOKYO (JAXA PR) — Using the infrared satellite AKARI, a Japanese research team has detected the existence of water in the form of hydrated minerals in a number of asteroids for the first time. This discovery will contribute to our understanding of the distribution of water in our solar system, the evolution of asteroids, and the origin of water on Earth.

(more…)

Holiday Asteroid Imaged with NASA Radar

These three radar images of near-Earth asteroid 2003 SD220 were obtained on Dec. 15-17, by coordinating observations with NASA’s 230-foot (70-meter) antenna at the Goldstone Deep Space Communications Complex in California and the National Science Foundation’s (NSF) 330-foot (100-meter) Green Bank Telescope in West Virginia. (Credits: NASA/JPL-Caltech/GSSR/NSF/GBO)

PASADENA, Calif. (NASA PR) — The December 2018 close approach by the large, near-Earth asteroid 2003 SD220 has provided astronomers an outstanding opportunity to obtain detailed radar images of the surface and shape of the object and to improve the understanding of its orbit.

The asteroid will fly safely past Earth on Saturday, Dec. 22, at a distance of about 1.8 million miles (2.9 million kilometers). This will be the asteroid’s closest approach in more than 400 years and the closest until 2070, when the asteroid will safely approach Earth slightly closer.

(more…)

NASA’s Newly Arrived OSIRIS-REx Spacecraft Already Discovers Water on Asteroid

This mosaic image of asteroid Bennu is composed of 12 PolyCam images collected on Dec. 2 by the OSIRIS-REx spacecraft from a range of 15 miles (24 km). (Credits: NASA/Goddard/University of Arizona)

GREENBELT, Md. (NASA PR) — Recently analyzed data from NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission has revealed water locked inside the clays that make up its scientific target, the asteroid Bennu.

(more…)

Planetary Defense: The Bennu Experiment

This artist’s concept shows the Origins Spectral Interpretation Resource Identification Security – Regolith Explorer (OSIRIS-REx) spacecraft contacting the asteroid Bennu with the Touch-And-Go Sample Arm Mechanism or TAGSAM. The mission aims to return a sample of Bennu’s surface coating to Earth for study as well as return detailed information about the asteroid and it’s trajectory. (Credits: NASA’s Goddard Space Flight Center)

GREENBELT, Md. (NASA PR) — On Dec. 3, after traveling billions of kilometers from Earth, NASA’s OSIRIS-REx spacecraft reached its target, Bennu, and kicked off a nearly two-year, up-close investigation of the asteroid. It will inspect nearly every square inch of this ancient clump of rubble left over from the formation of our solar system. Ultimately, the spacecraft will pick up a sample of pebbles and dust from Bennu’s surface and deliver it to Earth in 2023.

(more…)