A Sunburned Ryugu: Asteroid Surface Weathered by the Sun

Artificial crater on asteroid Ryugu (Credit: JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu, AIST)

TOKYO (JAXA PR) — New information about the surface and orbit of Ryugu has been uncovered from analyzing data obtained during touchdown and the global observations performed by the asteroid explorer, Hayabusa2. These findings have been published in the electronic version of the US scientific journal Science, on May 7, 2020 (May 8, JST: Morota et al, 2002). The paper was led by Associate Professor Tomokatsu Morota from the University of Tokyo and member of the Hayabusa2 science team.


JAXA, AIST Paving Way for Fabricating Integrated Circuits in Space

Fig. 1: Traditional Mega Fab and Minimal Fab (Credit: JAXA)


  • Japan Aerospace eXploration Agency (JAXA) is aiming to produce integrated circuits (ICs) for space applications with a small-volume production system (Minimal Fab) (Figure 1). Using a practical SOI-CMOS with two-layer aluminum wiring process, Technology 2018, developed by National Institute of Advanced Industrial Science and Technology (AIST) (Figure 2), JAXA has designed an IC which contains around 1000 transistors (4bit shift resistor and an I/O circuit) and manufactured a prototype chip (Figure 3) whose operations has been demonstrated successfully (Figure 4).
  • AIST has built a fully automatic Minimal Fab system, which enables a circuit designer to manufacture a semiconductor device on his own by operating a series of manufacturing equipment. Maneuvered by a JAXA circuit engineer, the new system has proven itself and produced the above ICs.
  • These prototyping and operational demonstration have opened the way to manufacturing electronic devices aboard spacecraft with a Minimal Fab process, which is expected to broaden the applications of the new process.

TOKYO (JAXA PR) — JAXA and AIST have been conducting a joint research project concerning the applications of a small-volume production system (Minimal Fab) (Figure 1) to aerospace research and development applications, and have demonstrated for the first time in the world that the new system can realize ICs intended for use in space.