NASA Funds Research into Creating Kilometer-Scale Space Structures from a Single Launch

A high-expansion-ratio auxetic structure can be stowed inside a single Falcon Heavy fairing and deployed to a final length of one kilometer on orbit as part of a large space station. The station can then be spun at 1-2 RPM to generate 1g artificial gravity at its ends while still maintaining a microgravity environment at its center near the spin axis, providing the crew with the flexibility of living in a 1g environment while performing some work in microgravity. (Credits: Zachary Manchester, graphic by Tzipora Thompson)

NASA Innovative Advanced Concepts (NIAC) Phase I Award
Funding: up to $125,000
Study Period: 9 months

Kilometer-Scale Space Structures from a Single Launch
Zachary Manchester
Carnegie Mellon University
Pittsburgh, Pa.


Long-duration spaceflight poses serious challenges for the human body, including muscle atrophy, bone loss, eyesight degradation, and immunosuppression. Many of these effects are linked to a lack of gravity. Generating artificial gravity inside rotating space habitats has been a dream of science fiction since the earliest pioneers of astronautics.

However, rotating to produce artificial gravity poses a serious challenge; Humans experience discomfort and motion sickness when exposed to rotation rates greater than a few RPM. To produce artificial gravity near 1g at rotation rates of 1-2 RPM, a kilometer-scale structure is needed. To address this challenge, we will leverage recent advances in mechanical metamaterials to design lightweight deployable structures with unprecedented expansion ratios of 150x or more.

Such a structure could be launched inside a single Falcon Heavy rocket fairing and then be deployed autonomously to a final size of a kilometer or more on orbit without requiring complex on-orbit assembly or fabrication. Our study will analyze a mission concept analogous to the Lunar Gateway, in which a kilometer-scale deployable structure forms the backbone of a large rotating space station.

2021 Phase I Selections

About NIAC

The NASA Innovative Advanced Concepts (NIAC) Program nurtures visionary ideas that could transform future NASA missions with the creation of breakthroughs — radically better or entirely new aerospace concepts — while engaging America’s innovators and entrepreneurs as partners in the journey.

The program seeks innovations from diverse and non-traditional sources and NIAC projects study innovative, technically credible, advanced concepts that could one day “change the possible” in aerospace. If you’re interested in submitting a proposal to NIAC, please see our “Apply to NIAC” link ( for information about the status of our current NASA Research Announcement (NRA). For descriptions of current NIAC projects, please refer to our ”NIAC Studies” link (

To find out more, see or contact us at